Low-carbohydrate diets and men's cortisol and testosterone: Systematic review and meta-analysis.

Nutrition and health. 2022;28(4):543-554

Other resources

Plain language summary

Testosterone is the primary male sex hormone, and vital for reproductive development and function. Moreover, low endogenous testosterone is associated with an increased risk of chronic disease, including type 2 diabetes and cardiovascular disease. The aim of this study was to investigate the effects of low- versus high-carbohydrate diets on mens' testosterone and cortisol. This study is a systematic review and meta-analysis of twenty-seven studies with a total of 309 participants. Twelve of these studies were randomised trials whilst the rest were non-randomised. Results show an increase in resting and post-exercise cortisol on short-term low-carbohydrate diets (<3 weeks). In fact, resting cortisol levels return to baseline after <3 weeks on a LC diet, whilst post-exercise cortisol remains elevated. Furthermore, high-protein diets cause a large decrease in resting total testosterone. Authors conclude that further research is required in order to warrant their findings.

Expert Review


Conflicts of interest: None

Take Home Message:
  • Short-term LC-diets diets cause a moderate increase in resting and post-exercise cortisol however this effect is not seen in LC-diets followed for great than 3 weeks
  • HP-LC diets caused a statistically significant decrease in resting TT, suggesting caution in relation to endocrine effects of LC diets

Evidence Category:
  • X A: Meta-analyses, position-stands, randomized-controlled trials (RCTs)
  • B: Systematic reviews including RCTs of limited number
  • C: Non-randomized trials, observational studies, narrative reviews
  • D: Case-reports, evidence-based clinical findings
  • E: Opinion piece, other

Summary Review:
Introduction:

A systematic review and network meta-analysis was conducted on the effects of low-carbohydrate (LC) versus high-carbohydrate (HC) diets on men’s testosterone and cortisol.

The review was registered with PROSPERO and reported using PRISMA 2020 checklists.

Methods:

A comprehensive search strategy was used to find intervention studies looking at healthy adult males and LC diets of <35% carbohydrate. Studies were assessed for quality using the Cochrane Risk of Bias tool. Sub-group analyses was conducted for diet duration, protein intake and exercise duration.

Results:

The literature search resulted in 27 studies with a total of 309 healthy adult male participants, age: 27.3 ± 4.7 (to minimise variation in steroid hormone metabolism), body mass: 78.6± 7.1kg and BMI: 24.8 ±1.6. 12 randomised and 15 non-randomised controlled trials were analysed. 21 studies were considered low risk bias, 5 medium and 1 high risk.

  • Short-term (<3 weeks) LC diets moderately increased resting cortisol (0.41 [0.16, 0.66], p < 0.01) when compared to HC diets.
  • Long-term (≥3 weeks) LC diets had no consistent effect on resting cortisol
  • LC diets resulted in higher post-exercise cortisol, after long-duration exercise (≥20 min): 0 h (0.78 [0.47, 1.1], p < 0.01), 1 h (0.81 [0.31, 1.31], p < 0.01), and 2 h (0.82 [0.33, 1.3], p < 0.01).
  • The overall results for resting total testosterone (TT) showed a significant decrease on LC versus HC diets (SMD = −0.48, p = 0.01. However, subgroup analyses revealed this effect to be limited to high-protein (HP) LC diets, which yielded a very large decrease in TT (SMD = −1.08, p < 0.01; ∼5.23 nmol/L), albeit in a small sample (n = 26).
  • Moderate protein (MP) (<35%), low-carbohydrate diets had no consistent effect on resting total testosterone, however high-protein (≥35%), low-carbohydrate diets greatly decreased resting (−1.08 [−1.67, −0.48], p < 0.01) and post-exercise total testosterone (−1.01 [−2, −0.01] p = 0.05).
  • There was no overall effect of LC versus HC diets on 0 h post-exercise TT (SMD = −0.03, p = 0.95). However, subgroup analysis showed 0 h post-exercise was non-significantly higher on long-term LC versus HC diets (SMD = 0.44, p = 0.18), and much lower on short-term LC versus HC diets (SMD = −1.01, p = 0.05)

Conclusion:

This systematic review and metanalysis found an increase in resting and post-exercise cortisol on short-term LC diets. Cortisol does return to baseline in the first 3 weeks of a low-carbohydrate (LC) diet. The same response is, however, not seen in post-exercise cortisol, which remains elevated. In addition, the review showed that compared to moderate-protein diets, HP diets were found to cause a large decrease in resting and post-exercise TT (∼5.23 nmol/L).

Clinical practice applications:
The results of this review suggest that exercising whilst following a LC diet can increase cortisol in the short term, but not long-term. This suggests a period of diet adaptation. The effects of long-term LC diets on cardiovascular disease risk is uncertain and healthcare practitioners should monitor client responses and keep up-to-date with new research in this area

Since HP-LC diets were found to significantly decrease resting testosterone it highlights the need to ensure that protein intake does not exceed the urea cycle’s capacity due to potential adverse endocrine effects.

For clients where there is a desire to increase strength, power and hypertrophy, a MP-LC diet could be of benefit, as it showed potential to signal an increased anabolic state post exercise..

NB: Since the review only included a low number of studies and saw within these some heterogeneity that could not be explained, more research is needed before the paper’s findings can be conclusive. The above potential practice applications should therefore be seen as something to be mindful of when working with clients where cortisol and testosterone levels are relevant to their protocol.

Considerations for future research:
Future research should consider:

  • Since LC diets have been shown to have a positive effect on health – decreased triglycerides, increased high density lipoprotein cholesterol and weight loss - future studies would benefit from including these markers so any positive and negative impacts can be monitored directly.
  • Despite extensive analysis including sensitivity analysis to reduce bias and heterogeneity of the results, the paper highlights a need for further research to ensure consistency in key parameters e.g., exercise duration and intensity, carbohydrate supplements inclusion and period of dietary intervention. Since it was identified that HP-LP diets impact post exercise and resting TT, follow up studies would benefit from consistency in participants diets. This would help to reduce any potential confounding results.

Abstract

Background: Low-carbohydrate diets may have endocrine effects, although individual studies are conflicting. Therefore, a review was conducted on the effects of low- versus high-carbohydrate diets on men's testosterone and cortisol. Methods: The review was registered on PROSPERO (CRD42021255957). The inclusion criteria were: intervention study, healthy adult males, and low-carbohydrate diet: ≤35% carbohydrate. Eight databases were searched from conception to May 2021. Cochrane's risk of bias tool was used for quality assessment. Random-effects, meta-analyses using standardized mean differences and 95% confidence intervals, were performed with Review Manager. Subgroup analyses were conducted for diet duration, protein intake, and exercise duration. Results: Twenty-seven studies were included, with a total of 309 participants. Short-term (<3 weeks), low- versus high-carbohydrate diets moderately increased resting cortisol (0.41 [0.16, 0.66], p < 0.01). Whereas, long-term (≥3 weeks), low-carbohydrate diets had no consistent effect on resting cortisol. Low- versus high-carbohydrate diets resulted in much higher post-exercise cortisol, after long-duration exercise (≥20 min): 0 h (0.78 [0.47, 1.1], p < 0.01), 1 h (0.81 [0.31, 1.31], p < 0.01), and 2 h (0.82 [0.33, 1.3], p < 0.01). Moderate-protein (<35%), low-carbohydrate diets had no consistent effect on resting total testosterone, however high-protein (≥35%), low-carbohydrate diets greatly decreased resting (-1.08 [-1.67, -0.48], p < 0.01) and post-exercise total testosterone (-1.01 [-2, -0.01] p = 0.05). Conclusions: Resting and post-exercise cortisol increase during the first 3 weeks of a low-carbohydrate diet. Afterwards, resting cortisol appears to return to baseline, whilst post-exercise cortisol remains elevated. High-protein diets cause a large decrease in resting total testosterone (∼5.23 nmol/L).

Lifestyle medicine

Fundamental Clinical Imbalances : Hormonal
Environmental Inputs : Diet ; Nutrients
Personal Lifestyle Factors : Nutrition
Functional Laboratory Testing : Not applicable

Methodological quality

Jadad score : Not applicable
Allocation concealment : Not applicable

Metadata